News & Events

The Commission is in the process of updating some of the content on this website in light of the withdrawal of the United Kingdom from the European Union. If the site contains content that does not yet reflect the withdrawal of the United Kingdom, it is unintentional and will be addressed.

The Cyprus Nanogrid Pilot: The University of Cyprus' (UCY) nanogrid solution

Share this Post:

Single-line drawing of Cyprus nanogrid test-site

The PEGASUS Interreg MED project (Promoting Effective Generation and Sustainable USes of electricity) aims to give evidence of the feasibility of microgrids acting on technical or administrative obstacles which are hindering the use of microgrids in disadvantaged areas; a tested business model will show advantages of smart interconnection and facilitate the adoption of necessary acts to define an ENABLING environment. The innovative approach of PEGASUS focused on experimenting a simulation of functioning of microgrids in 7 pilot areas jointly; solutions will be based on concrete situation with real data.

 

The UCY will test the functioning of a nanogrid (see definition below). The main goal is to model commercial and residential loads. Its smart meters will be able to measure consumption and generation parameters (such as active power, reactive power, voltage, current etc.) with high precision and accuracy. Through the nanogrid operation, FOSS research center aspires to provide a living-lab environment for the development, validation and qualification of innovative Smart Grid technologies and architectures.

 

The UCY’s nanogrid solution has been designed taking into consideration the special technical requirements and the purchase of equipment that is necessary for the implementation of the project’s goals. To facilitate minimum level of measuring and analysis capability, the following equipment/ apparatus, loads, sensors and central software management system will be installed through PEGASUS or other running projects within the university:

 

  • Three 3-phase smart meters with associated Current Transformers (CTs), wiring and auxiliary equipment. The smart meters are able to measure, calculate and display the main electrical parameters for the 3-phase systems (balanced or unbalanced).
  • Electrical load to facilitate alternative load capabilities and extend the investigation possibilities of the nanogrid set up. The electrical load has already been acquired and its specifications are the following: Chroma 63800 Programmable AC & DC Electronic Load (3600W). It is designed for testing Uninterruptible Power Supplies (UPS), Off-Grid Inverters, AC sources and other power devices such as switches, circuit breakers, fuses and connectors. The Programmable load can simulate load conditions under high crest factor and varying power factors with real time compensation even when the voltage waveform is distorted. This special feature provides real world simulation capability and prevents over-stressing, which allows to have reliable and unbiased test results.
  • A 10 kWhr storage system with an associated energy management system that will be coordinated with the local PV systems of approximate capacity of 35 kWp.
  • An EV charging/discharging station that will be installed within the university campus along with a battery storage at the installation point of the EV station, that will perform the discharging operation of the EV station.
  • Central software management system with data collection infrastructure, analysis platform and reporting capabilities. This management system will sit at a higher level in the university Microgrid and will be able to offer services to the nanogrid.

 

What is a nanogrid?
Nanogrids are small microgrids, typically serving a single building or even a single load. We can define a nanogrid as a small electrical domain which is connected to the grid, is no greater than 100 kW and is limited to a single building structure. This electrical domain represents devices, such as DG (Distributed Generation), storage, EVs (electric vehicles), and smart loads, and is capable of islanding and/or energy self-sufficiency through some level of intelligent DER [distributed energy resources] management or controls.

 

Learn more about the PEGASUS project and its tests on microgrids HERE